Exemplos de estratégias de negociação algorítmica
Obter via App Store Leia este post em nosso aplicativo!
Exemplos de estratégias de negociação algorítmica para opções [fechadas]
A maioria dos exemplos de livros didáticos e recursos on-line falam sobre negociação algorítmica de ações, futuros, forex etc. Cobrem técnicas como negociação de cointegração, análise ARIMA e muitas outras formas mais exóticas de negociar esses instrumentos.
No entanto, uma coisa que eu realmente nunca vejo são exemplos de fazer exatamente a mesma coisa para opções sobre, digamos, ações. Obviamente, isso será um pouco mais difícil devido à natureza das opções, mas não parece impossível.
Alguns exemplos que posso (grosso modo) pensar estão tentando calcular valores melhores para IV e tal, e encontrar erros nas opções dessa maneira. Mas tem que haver algumas estratégias baseadas completamente no subjacente, usando as técnicas acima (como ARIMA). Que tipo de exemplos de negociação algorítmica de opções existem?
fechado como off-topic por LocalVolatility, Quantuple, SmallChess, Alex C, vonjd 1 de fevereiro de 17 às 11:43.
Esta questão parece estar fora do tópico. Os usuários que votaram em fechar deram esse motivo específico: "Questões que buscam ajuda no desenvolvimento de uma estratégia comercial são fora do tópico, pois é improvável que sejam úteis para outros leitores." & ndash; LocalVolatility, Quantuple, SmallChess, Alex C, vonjd Se essa questão puder ser reformulada para se ajustar às regras da Central de Ajuda, edite a pergunta.
Pode-se usar um modelo GARCH não normal para prever a volatilidade incondicional e compará-la com a volatilidade implícita.
Se você acredita que os preços de mercado das opções europeias de compra e venda são muito baixos e você deve comprá-los. Se a sua previsão implícita é menor do que a volatilidade implícita atual, então os preços de mercado das opções européias de compra e venda são muito altos e você deve vendê-los.
No entanto, as opções dependem da volatilidade e do preço do subjacente, se você não tiver certeza sobre o preço do seu estoque, digamos, pode-se negociar com o ATM Straddle, para que você negocie apenas a volatilidade.
Algorithmic Trading System Design & amp; Implementação.
AlgorithmicTrading é um desenvolvedor de sistema de negociação de terceiros especializado em sistemas automatizados de negociação, estratégias de negociação algorítmica e análise de negociação quantitativa. Oferecemos dois algoritmos de negociação distintos para comerciantes de varejo e investidores profissionais.
Assista ao nosso blog de vídeo algorítmico em que nosso principal desenvolvedor analisa o desempenho a partir de 6/10/17 & ndash; 8/8/17 usando nosso sistema de negociação automatizado. Visite nosso Blog Algorithmic Trading para ver todos os vídeos de desempenho de 2016-2018 no acumulado do ano. Os futuros e opções de negociação envolvem risco substancial de perda e não são adequados para todos os investidores.
Comece hoje mesmo na negociação algorítmica.
Os Destaques do Swing Trader.
Nossa Swing Trading Strategy negocia o S & P 500 Emini Futures (ES) e o Ten Year Note (TY). Este é um sistema de negociação 100% automatizado que pode ser executado automaticamente com os melhores esforços por vários Corretores Registrados da NFA. Também pode ser instalado e carregado na plataforma Tradestation. Os seguintes dados cobrem o período de avanço (fora da amostra) que abrange 10/1 / 15-1 / 4/18. A negociação de futuros envolve risco substancial de perda e não é apropriada para todos os investidores. O desempenho passado não é indicativo de desempenho futuro. Esses dados presumem que 1 unidade (US $ 15.000) foi negociada durante todo o período em análise (non-compounded).
* Perdas podem exceder o rebaixamento máximo. Isso é medido de pico a vale, fechando o comércio para fechar o comércio. O desempenho passado não é indicativo de desempenho futuro.
O Swing Trader Mensal P / L.
Os negócios iniciados em outubro de 2015 são considerados Walk-Forward / Out-of-Sample, enquanto os negócios anteriores a outubro de 2015 são considerados back-tested. Os lucros / perdas fornecidos são baseados em uma conta de US $ 15.000 que troca 1 unidade no Swing Trader. Esses dados não são compostos.
* Perdas podem exceder o rebaixamento máximo. Isso é medido de pico a vale, fechando o comércio para fechar o comércio. O desempenho passado não é indicativo de desempenho futuro.
CFTC REGRA 4.41: Os resultados são baseados em resultados de desempenho simulados ou hipotéticos que possuem certas limitações inerentes. Ao contrário dos resultados apresentados em um registro de desempenho real, esses resultados não representam a negociação real. Além disso, como esses negócios não foram efetivamente executados, esses resultados podem ter uma compensação maior ou menor pelo impacto, se houver, de alguns fatores de mercado, como a falta de liquidez. Programas de negociação simulados ou hipotéticos em geral também estão sujeitos ao fato de serem projetados com o benefício de retrospectiva. Não está sendo feita nenhuma representação de que qualquer conta terá ou poderá obter lucros ou perdas similares a essas demonstrações.
Noções básicas de negociação algorítmica.
Algorithmic Trading, também conhecido como Quant Trading é um estilo de negociação que utiliza algoritmos de previsão de mercado para encontrar negociações potenciais. Existem várias subcategorias de negociação quantitativa para incluir High Frequency Trading (HFT), Arbitragem Estatística e Análise de Predição de Mercado. Na AlgorithmicTrading, nós nos concentramos no desenvolvimento de sistemas de negociação automatizados que fazem negócios de swing, dia e opções para aproveitar as ineficiências do mercado.
Atualmente, estamos oferecendo dois sistemas de negociação de futuros que negociam o ES & amp; Futuros de TY. Continue lendo para ver por si mesmo como implementar um sistema de negociação de algo projetado profissionalmente pode ser benéfico para suas metas de investimento. Nós não somos registrados Consultores de Negociação de Commodities e, portanto, não controlamos diretamente as contas de clientes & ndash; no entanto, negociamos ambos os sistemas de negociação com nosso próprio capital, utilizando um dos corretores de execução de negociação automatizada.
Exemplo de negociação algorítmica.
Estratégia de negociação de futuros: o pacote Swing Trader.
Este pacote utiliza nossos algoritmos de melhor desempenho desde o início. Visite a página do comerciante do swing para ver preços, estatísticas comerciais completas, lista completa de comércio e muito mais. Este pacote é ideal para o cético que deseja negociar um sistema robusto que tenha se saído bem em negociações cegas para fora e para fora da amostra. Cansado de modelos otimistas com back-testing que nunca parecem funcionar quando negociados ao vivo? Se assim for, considere este sistema de negociação de caixa preta. Este é o nosso algoritmo de negociação mais popular para venda.
Detalhes no Swing Trader System.
Futuros & amp; Estratégia de negociação de opções: o pacote S & amp; P Crusher v2.
Este pacote utiliza sete estratégias de negociação em uma tentativa de diversificar melhor sua conta. Este pacote utiliza comércios de swing, day trades, condutores de ferro e chamadas cobertas para tirar proveito de várias condições de mercado. Este pacote é negociado em unidades de tamanho de US $ 30.000 e foi lançado ao público em outubro de 2016. Visite a página do produto S & P Crusher para ver os resultados do back-test com base nos relatórios de comercialização.
Detalhes no triturador S & P.
Cobrindo os fundamentos do design do sistema de negociação automatizado.
Múltiplos Sistemas de Negociação Algorítmica Disponíveis.
Escolha de um dos nossos sistemas de negociação & ndash; O Swing Trader ou o S & amp; P Crusher. Cada página mostra a lista de negociação completa, incluindo resultados de otimização de post-forward, walk-forward. Esses sistemas de negociação informatizados de caixa preta são totalmente automatizados para gerar alfa ao tentar minimizar o risco.
Algoritmos de negociação múltiplos trabalhando juntos.
Nossa metodologia de negociação quântica nos emprega várias estratégias de negociação de algoritmos para diversificar melhor sua conta de negociação automática. Saiba mais visitando nossa página de metodologia de design de estratégias de negociação.
Trades During Bear & amp; Bull Markets.
Em nossa opinião, a chave para o desenvolvimento de um sistema de negociação algorítmica que realmente funciona é contabilizar múltiplas condições de mercado. A qualquer momento, o mercado poderia passar de um touro para um mercado em baixa. Ao assumir uma posição agnóstica de direção do mercado, estamos tentando superar em Bull e amp; Condições de mercado do urso.
Sistemas de negociação totalmente automatizados.
Você pode negociar automaticamente nosso software algorítmico usando um corretor de execução automática (com os melhores esforços). Temos vários corretores para você escolher. Remova as decisões baseadas em emoções de sua negociação usando nosso sistema de negociação automatizado.
O comércio algorítmico funciona?
Acompanhe o progresso diário de nossos algoritmos de negociação quantitativa com o aplicativo do corretor OEC. Você também receberá declarações diárias da firma de compensação registrada da NFA. Você pode comparar cada uma das suas negociações com a lista comercial que publicamos no final de cada dia. Exemplos completos de negociação algorítmica são postados para todos verem. A lista completa de transações pode ser vista visitando a página de negociação algorítmica do sistema que você está negociando. Quer ver algumas declarações de contas ativas? Visite os retornos ao vivo & amp; página de instruções.
Múltiplas Estratégias de Negociação Quant.
Nossos sistemas de negociação quantitativos têm diferentes expectativas com base nos algoritmos preditivos empregados. Nossos Sistemas de Negociação Automatizada colocarão operações de swing, day trade, condutores de ferro & amp; chamadas cobertas. Estas Estratégias 100% Quant baseiam-se puramente em indicadores técnicos e algoritmos de reconhecimento de padrões.
Nosso software de negociação automatizada ajuda a remover suas emoções da negociação.
Algoritmos de negociação múltiplos são negociados como parte de um maior sistema de negociação algorítmica.
Cada estratégia de negociação algorítmica oferecida tem vários pontos fortes e fracos. Seus pontos fortes e fracos são identificados com base em três estados de mercado potenciais: Strong Up, Sideways & amp; Abaixo mercados em movimento. A estratégia de negociação de condores de ferro supera os mercados em movimento lateral e ascendente, enquanto o algoritmo das notas de tesouro se sobressai nos mercados em baixa. Com base no backtesting, espera-se que o algoritmo de momentum tenha um bom desempenho durante os mercados em ascensão. Confira a seguinte coleção de vídeos, onde cada algoritmo de negociação oferecido é revisado por nosso desenvolvedor líder. Os pontos fortes de cada algoritmo de negociação são analisados juntamente com as suas fraquezas.
Vários tipos de estratégias de negociação são usados em nosso software de negociação automatizada.
Comissões do dia são inseridas & amp; saiu no mesmo dia, enquanto as negociações de giro terão um longo prazo de negociação com base nas expectativas para o S & amp; P 500 a tendência de maior ou menor no prazo intermédio. Os negócios de opções são colocados nas opções semanais do S & amp; P 500 sobre futuros, normalmente entrando em uma segunda-feira e mantendo até a expiração da sexta-feira.
Estratégias de negociação Swing.
As seguintes Swing Trading Strategies colocam operações de swing direccionais no S & amp; P 500 Emini Futures (ES) e na Nota de Dez Anos (TY). Eles são usados em ambos os sistemas de negociação automatizados que oferecemos para aproveitar as tendências de longo prazo que nossos algoritmos de predição de mercado estão esperando.
Futures Swing Trading Strategy # 1: Momentum Swing Trading Algorithm.
A Momentum Swing Trading Strategy coloca os negócios do swing no Emini S & amp; P Futures, aproveitando as condições de mercado que sugerem um movimento de prazo intermediário mais alto. Este algoritmo de negociação é usado em ambos os nossos sistemas de negociação automatizados: O S & amp; P Crusher v2 & amp; O comerciante do balanço.
Estratégia de Negociação de Futuros Swing # 2: Algoritmo de Notas do Tesouro de Dez Anos.
A Tesouraria Note (TY) Trading Strategy coloca swing trades na nota de dez anos (TY). Uma vez que o TY tipicamente se move inversamente para os mercados mais amplos, esta estratégia cria um trade swing semelhante ao shorting do S & P 500. Este algoritmo T-Note tem expectativas positivas para condições de mercado em baixa. Este algoritmo de negociação é usado em ambos os nossos sistemas de negociação automatizados: O S & amp; P Crusher v2 & amp; O comerciante do balanço.
Estratégias de Negociação Diária.
As estratégias de negociação do dia seguinte colocam o day trade no S & amp; P 500 Emini Futures (ES). Eles quase sempre entram em negociações durante os primeiros 20 minutos após a abertura dos mercados de ações e saem antes do fechamento dos mercados. Paradas apertadas são utilizadas em todos os momentos.
Estratégia de Negociação do Dia de Futuros # 1: Algoritmo de Negociação de Dia.
A Estratégia de Negociação de Dia Curta coloca negociações diárias no Emini S & P Futures quando o mercado mostra fraqueza pela manhã (prefere uma grande diferença para baixo). Esta estratégia de negociação é utilizada no sistema de negociação automatizado S & amp; P Crusher v2.
Estratégia de Negociação de Dia de Futuro # 2: Algoritmo de Negociação de Dia de Breakout.
A Breakout Day Trading Strategy coloca o day trade no Emini-S & P Futures quando o mercado mostra força pela manhã. Esta estratégia de negociação de futuros é utilizada no sistema de negociação automatizado S & amp; P Crusher v2.
Estratégia de Negociação de Dia de Futuros # 3: Algoritmo de Negociação de Dia de Intervalo da Manhã.
O Morning Gap Day Trading Strategy coloca negócios de dia curto no Emini S & amp; P Futures quando o mercado tem uma grande lacuna, seguido por um curto período de fraqueza. Esta estratégia de negociação é utilizada no sistema de negociação automatizado S & amp; P Crusher v2.
Estratégias de negociação de opções.
As seguintes estratégias de negociação de opções cobram prêmio no S & amp; P 500 Emini Weekly Options (ES). Eles são usados em nosso S & amp; P Crusher v2, a fim de aproveitar as vantagens de lateralmente, para baixo & amp; condições de mercado em movimento. Um benefício para as opções de negociação com nossas estratégias de negociação algorítmica é que elas são suportadas em um ambiente de negociação automatizado usando um dos corretores de execução automática.
Opções Trading Strategy # 1: Algoritmo de Condor Iron Condor.
A Estratégia de Negociação de Opções de Condor da Iron é perfeita para quem deseja uma taxa de ganhos por negociação mais alta e que simplesmente quer cobrar prêmios no S & amp; P 500 Emini Futures com a venda da Iron Condors. Quando nossos algoritmos esperam uma condição de mercado de derivação lateral ou ascendente, esse sistema criará uma operação de Condor de Ferro. Essa estratégia é usada em um dos nossos Sistemas de negociação automatizados: O S & amp; P Crusher v2.
Estratégia de Negociação de Opções # 2: Algoritmo de Opções de Chamadas Cobertas.
A Estratégia de Negociação de Opções de Compra Coberta vende de chamadas cobertas por dinheiro contra os algoritmos de momento Long swing swing, para cobrar prêmios e ajudar a minimizar as perdas caso o mercado se mova contra nossa posição no algoritmo de momentum. Quando negociado com o Momentum Swing Trading Algorithm - como é o caso no S & amp; P Crusher & amp; amp; ES / TY Futures Trading Systems, isso cria uma posição de compra coberta. Quando negociados no Sistema de Negociação Bearish Trader, as chamadas são vendidas sem cobertura e, portanto, são vendidas a descoberto. Em ambos os casos, & ndash; como um suporte ao longo do algoritmo & ndash; Ele funciona bem em condições de mercado em movimento lateral e para baixo. Essa estratégia é usada em um dos nossos Sistemas de negociação automatizados: O S & amp; P Crusher v2.
Embora cada uma dessas estratégias de negociação possa ser negociada isoladamente, elas são negociadas melhor em uma coleção mais ampla de algoritmos de negociação & ndash; como visto em um dos nossos sistemas automatizados de negociação, como o The Swing Trader.
Algoritmos de negociação que realmente funcionam?
Essa série de vídeos de negociação algorítmica é feita para que nossos clientes possam ver os detalhes de cada negociação semanalmente. Assista a cada um dos seguintes vídeos de negociação algorítmica para ver em tempo real o desempenho de nossos algoritmos de negociação. Sinta-se à vontade para visitar nossos Críticas de AlgorithmicTrading & amp; Página Press Releases para ver o que os outros estão dizendo sobre nós.
Inscrição na Newsletter.
Obtenha atualizações de desempenho da AlgorithmicTrading juntando-se à nossa newsletter.
O que separa o comércio algorítmico de outras técnicas técnicas de negociação?
Nos dias de hoje, parece que todo mundo tem uma opinião sobre as técnicas de negociação técnica. Head & amp; Padrões de ombros, MACD Bullish Crosses, VWAP Divergences, a lista continua. Nesses vídeos, nosso engenheiro líder de projeto analisa alguns exemplos de estratégias de negociação encontradas on-line. Ele toma suas Dicas de negociação, codifica e executa um teste de back-back simples para ver o quão eficaz eles realmente são. Depois de analisar os resultados iniciais, ele otimiza o código para ver se uma abordagem quantitativa da negociação pode melhorar as descobertas iniciais. Se você é novo em negociação algorítmica, esses blogs de vídeo serão bastante interessantes. Nosso designer utiliza máquinas de estado finito para codificar essas dicas básicas de negociação. Como a negociação algorítmica difere da negociação técnica tradicional? Simplificando, o Algorithmic Trading requer precisão e fornece uma janela para um potencial de algoritmos baseado em back-testing que possui limitações.
Procurando por Algorithmic Trading Tutorial & amp; Como para vídeos?
Assista a várias apresentações de vídeo educativo feitas por nosso designer líder em negociação algorítmica para incluir um vídeo que cobre nossa Metodologia de Design de Quantificação Comercial e um Tutorial de Negociação Algorítmica. Esses vídeos de estratégia de negociação fornecem exemplos de codificação de comércio algorítmico e o introduzem à nossa abordagem de negociar os mercados usando análise quantitativa. Nesses vídeos, você verá muitas razões pelas quais a negociação automatizada está decolando para incluir a ajuda para remover suas emoções da negociação. Visite nossa página de vídeos de negociação educacional para ver uma lista completa de mídia educacional.
Comece a usar um dos nossos sistemas de negociação automatizados hoje.
Não perca. Junte-se aos que já estão negociando com AlgorithmicTrading. Comece hoje mesmo com um dos nossos pacotes de negociação algorítmica.
Várias opções de execução automática de comércio estão disponíveis.
Nossos algoritmos de negociação podem ser executados automaticamente usando um dos corretores de execução automática registrados pela NFA (com os melhores esforços) ou podem ser negociados em seu próprio PC usando MultiCharts ou Tradestation.
O FOX Group é uma corretora de introdução independente localizada no icônico prédio da Chicago Board of Trade, no coração do distrito financeiro da cidade. Eles são registrados no NFA e são capazes de executar nossos algoritmos automaticamente com os melhores esforços.
Os corretores interativos são corretores registrados pela NFA que podem executar nossos algoritmos automaticamente com os melhores esforços. Além disso, eles suportam clientes canadenses.
Se você preferir executar os algoritmos em seu próprio PC, o MultiCharts é a plataforma preferida de software de negociação para execução automática. Oferece benefícios consideráveis aos comerciantes e oferece vantagens significativas em relação às plataformas concorrentes. Ele vem com gráficos de alta definição, suporte a mais de 20 feeds de dados e mais de 10 corretores, backtesting dinâmico de estratégia em nível de portfólio, suporte a EasyLanguage, relatórios interativos de desempenho, otimização genética, scanner de mercado e replay de dados.
A TradeStation é mais conhecida pelo software de análise e pela plataforma de negociação eletrônica que oferece ao operador ativo e a determinados mercados de traders institucionais que permitem que os clientes projetem, testem, otimizem, monitorem e automatizem suas próprias ações, opções e opções personalizadas. estratégias de negociação de futuros. Tradestation é outra opção para pessoas que desejam negociar automaticamente nossos algoritmos em seu próprio PC.
Estratégias de Negociação Algorítmica com Exemplos do MATLAB.
Ernest Chan, QTS Capital Management, LLC.
O paradigma tradicional de aplicar técnicas não-lineares de aprendizado de máquina a estratégias de negociação algorítmica normalmente sofre um grande viés de bisbilhotagem de dados. Por outro lado, técnicas lineares, inspiradas e constrangidas pelo conhecimento profundo do domínio, provaram ser valiosas. Esta apresentação descreve a aplicação do filtro de Kalman, uma técnica essencialmente linear, de duas maneiras diferentes para a negociação algorítmica.
Foco do produto.
Produtos relacionados.
Vídeos Relacionados e Webinars.
Escolha o seu país.
Escolha o seu país para obter conteúdo traduzido onde estiver disponível e veja eventos e ofertas locais. Com base na sua localização, recomendamos que você selecione:.
Você também pode selecionar um local na lista a seguir:
América Latina (Español) Canadá (inglês) Estados Unidos (inglês)
Bélgica (inglês) Dinamarca (inglês) Deutschland (Deutsch) España (Español) Finland (inglês) France (Français) Ireland (inglês) Italia (Italiano) Luxembourg (inglês)
Holanda (inglês) Noruega (inglês) Österreich (Deutsch) Portugal (inglês) Sweden (inglês) Switzerland Deutsch English Français Reino Unido (inglês)
Ásia-Pacífico.
Austrália (inglês) Índia (inglês) Nova Zelândia (inglês) 中国 (简体 中文) 日本 (日本語) 한국 (한국어)
Explorar produtos.
Experimente ou compre.
Aprenda a usar.
Obtenha suporte.
Sobre o MathWorks.
Acelerando o ritmo da engenharia e da ciência.
MathWorks é o desenvolvedor líder de software de computação matemática para engenheiros e cientistas.
Noções básicas de negociação algorítmica: conceitos e exemplos.
Um algoritmo é um conjunto específico de instruções claramente definidas destinadas a realizar uma tarefa ou processo.
O comércio algorítmico (negociação automatizada, negociação de caixa preta ou simplesmente negociação de algoritmos) é o processo de usar computadores programados para seguir um conjunto definido de instruções para fazer uma negociação, a fim de gerar lucros a uma velocidade e freqüência impossíveis para uma negociação. comerciante humano. Os conjuntos de regras definidos são baseados em tempo, preço, quantidade ou qualquer modelo matemático. Para além das oportunidades de lucro para o comerciante, a negociação de algoritmos torna os mercados mais líquidos e torna o comércio mais sistemático ao excluir os impactos humanos emocionais nas atividades de negociação. (Para mais, confira Escolhendo o Software de Negociação Algorítmica Certo.)
Suponha que um comerciante siga estes critérios comerciais simples:
Compre 50 ações de uma ação quando a média móvel de 50 dias ultrapassar a média móvel de 200 dias. Venda ações da ação quando a média móvel de 50 dias ficar abaixo da média móvel de 200 dias.
Usando este conjunto de duas instruções simples, é fácil escrever um programa de computador que monitore automaticamente o preço das ações (e os indicadores de média móvel) e coloque as ordens de compra e venda quando as condições definidas forem atendidas. O comerciante não precisa mais ficar de olho nos preços e gráficos ao vivo, ou colocar os pedidos manualmente. O sistema de negociação algorítmica faz isso automaticamente, identificando corretamente a oportunidade de negociação. (Para obter mais informações sobre médias móveis, consulte Médias móveis simples Faça as tendências se destacarem.)
[Se você quiser aprender mais sobre as estratégias comprovadas e que podem eventualmente ser trabalhadas em um sistema de negociação alorítimo, confira o curso Torne-se um Day Trader da Investopedia Academy. ]
Benefícios do comércio algorítmico.
Algo-trading fornece os seguintes benefícios:
Negociações executadas com os melhores preços Possibilidade de colocação imediata e imediata de ordens (com altas chances de execução nos níveis desejados) Negociações cronometradas correta e instantaneamente, para evitar mudanças significativas nos preços Redução dos custos de transação (veja o exemplo de déficit de implementação abaixo) Verificações automatizadas simultâneas em múltiplos condições de mercado Risco reduzido de erros manuais na colocação dos negócios Backtest o algoritmo, com base em dados históricos e em tempo real disponíveis Reduzida possibilidade de erros por parte de comerciantes humanos com base em fatores emocionais e psicológicos.
A maior parte da negociação de algoritmos atuais é a negociação de alta frequência (HFT), que tenta capitalizar a colocação de um grande número de pedidos em velocidades muito rápidas em vários mercados e vários parâmetros de decisão, com base em instruções pré-programadas. (Para mais informações sobre negociação de alta frequência, consulte Estratégias e segredos de empresas de negociação de alta frequência (HFT).)
O comércio de algo é usado em muitas formas de atividades de negociação e investimento, incluindo:
Investidores de médio a longo prazo ou empresas compradoras (fundos de pensão, fundos mútuos, seguradoras) que compram em grandes quantidades, mas não querem influenciar os preços das ações com investimentos discretos e de grande volume. Os comerciantes de curto prazo e os participantes do lado da venda (fabricantes de mercado, especuladores e arbitragentes) se beneficiam da execução comercial automatizada; Além disso, o comércio de algo ajuda a criar liquidez suficiente para os vendedores no mercado. Comerciantes sistemáticos (seguidores de tendência, pares de traders, hedge funds, etc.) acham muito mais eficiente programar suas regras de negociação e permitir que o programa troque automaticamente.
O comércio algorítmico proporciona uma abordagem mais sistemática ao comércio ativo do que os métodos baseados na intuição ou instinto do comerciante humano.
Estratégias de negociação algorítmica.
Qualquer estratégia para negociação algorítmica requer uma oportunidade identificada que seja lucrativa em termos de ganhos aprimorados ou redução de custos. A seguir estão as estratégias de negociação comuns usadas no comércio de algo:
As estratégias de negociação algorítmicas mais comuns seguem as tendências em médias móveis, fuga de canais, movimentos no nível de preços e indicadores técnicos relacionados. Essas são as estratégias mais fáceis e simples de implementar por meio do comércio algorítmico, porque essas estratégias não envolvem previsões nem previsões de preços. As negociações são iniciadas com base na ocorrência de tendências desejáveis, que são fáceis e diretas de implementar por meio de algoritmos, sem entrar na complexidade da análise preditiva. O exemplo acima mencionado de média móvel de 50 e 200 dias é uma tendência popular seguindo a estratégia. (Para mais informações sobre estratégias de negociação de tendências, consulte: Estratégias simples para capitalizar tendências.)
Comprar uma ação com cotação dupla a um preço menor em um mercado e, simultaneamente, vendê-la a um preço mais alto em outro mercado oferece o diferencial de preço como lucro ou arbitragem isenta de risco. A mesma operação pode ser replicada para ações versus instrumentos futuros, já que os diferenciais de preço existem de tempos em tempos. Implementar um algoritmo para identificar esses diferenciais de preços e colocar as ordens permite oportunidades lucrativas de maneira eficiente.
Os fundos de índices definiram períodos de reequilíbrio para aproximar seus investimentos aos seus respectivos índices de referência. Isso cria oportunidades lucrativas para os operadores algorítmicos, que capitalizam os negócios esperados que oferecem lucros de 20 a 80 pontos básicos, dependendo do número de ações no fundo de índice, imediatamente antes do rebalanceamento do fundo de índice. Tais negociações são iniciadas através de sistemas de negociação algorítmica para execução atempada e melhores preços.
Muitos modelos matemáticos comprovados, como a estratégia de negociação delta-neutral, que permitem negociar com combinação de opções e seu título subjacente, onde são feitas negociações para compensar deltas positivos e negativos, de modo que o delta do portfólio seja mantido em zero.
A estratégia de reversão à média baseia-se na ideia de que os preços altos e baixos de um ativo são um fenômeno temporário que revertem para seu valor médio periodicamente. Identificar e definir uma faixa de preço e implementar um algoritmo com base nisso permite que os negócios sejam colocados automaticamente quando o preço do ativo entra e sai de seu intervalo definido.
A estratégia de preço médio ponderado por volume divide uma ordem grande e libera partes menores da ordem para o mercado, determinadas dinamicamente, usando perfis históricos específicos de estoque. O objetivo é executar o pedido próximo ao Preço Médio Ponderado pelo Volume (VWAP), beneficiando, assim, no preço médio.
A estratégia de preço médio ponderada pelo tempo quebra uma ordem grande e libera dinamicamente pedaços menores da ordem para o mercado usando intervalos de tempo divididos uniformemente entre uma hora inicial e final. O objetivo é executar o pedido próximo ao preço médio entre os horários inicial e final, minimizando o impacto no mercado.
Até que a ordem de negociação esteja totalmente preenchida, este algoritmo continua enviando ordens parciais, de acordo com a taxa de participação definida e de acordo com o volume negociado nos mercados. A "estratégia de etapas" relacionada envia ordens a uma porcentagem definida pelo usuário de volumes de mercado e aumenta ou diminui essa taxa de participação quando o preço da ação atinge os níveis definidos pelo usuário.
A estratégia de déficit de implementação visa minimizar o custo de execução de um pedido negociando o mercado em tempo real, economizando assim no custo do pedido e se beneficiando do custo de oportunidade de execução atrasada. A estratégia aumentará a taxa de participação visada quando o preço das ações se mover favoravelmente e diminuirá quando o preço das ações se mover negativamente.
Existem algumas classes especiais de algoritmos que tentam identificar “acontecimentos” do outro lado. Esses "algoritmos de farejamento", usados, por exemplo, por um criador de mercado no lado da venda, têm a inteligência incorporada para identificar a existência de quaisquer algoritmos no lado da compra de uma grande ordem. Essa detecção por meio de algoritmos ajudará o criador de mercado a identificar grandes oportunidades de pedidos e possibilitará que ele se beneficie com o preenchimento dos pedidos a um preço mais alto. Às vezes, isso é identificado como front-running de alta tecnologia. (Para mais informações sobre comércio de alta frequência e práticas fraudulentas, consulte: Se você comprar ações on-line, você está envolvido em HFTs.)
Requisitos técnicos para negociação algorítmica.
Implementar o algoritmo usando um programa de computador é a última parte, batida com backtesting. O desafio é transformar a estratégia identificada em um processo informatizado integrado que tenha acesso a uma conta de negociação para fazer pedidos. Os seguintes são necessários:
Conhecimentos de programação de computadores para programar a estratégia de negociação necessária, programadores contratados ou software de negociação pré-fabricados. Conectividade de rede e acesso a plataformas de negociação para colocação de pedidos. Acesso a feeds de dados de mercado que serão monitorados pelo algoritmo para oportunidades de fazer pedidos. para backtest o sistema, uma vez construído, antes de ir viver em mercados reais Dados históricos disponíveis para backtesting, dependendo da complexidade das regras implementadas no algoritmo.
Aqui está um exemplo abrangente: A Royal Dutch Shell (RDS) está listada na Bolsa de Valores de Amsterdã (AEX) e na Bolsa de Valores de Londres (LSE). Vamos criar um algoritmo para identificar oportunidades de arbitragem. Aqui estão algumas observações interessantes:
AEX negocia em Euros, enquanto a LSE negocia em Libras Esterlinas Devido à diferença horária de uma hora, a AEX abre uma hora antes da LSE, seguida pelas duas bolsas negociadas simultaneamente pelas próximas horas e depois negociando apenas na LSE durante a última hora conforme a AEX fecha .
Podemos explorar a possibilidade de negociação de arbitragem sobre as ações da Royal Dutch Shell listadas nesses dois mercados em duas moedas diferentes?
Um programa de computador que pode ler os preços de mercado atuais Feeds de preço de LSE e AEX Um feed de taxa forex para taxa de câmbio GBP-EUR Capacidade de colocação de pedidos que pode encaminhar o pedido para a capacidade correta de troca de teste de retorno em feeds de preços históricos.
O programa de computador deve executar o seguinte:
Leia o preço de entrada do estoque RDS de ambas as bolsas Usando as taxas de câmbio disponíveis, converta o preço de uma moeda para outra. Se houver uma discrepância de preço suficientemente grande (descontando os custos de corretagem) levando a uma oportunidade rentável, então coloque a compra ordem em troca de preços mais baixos e ordem de venda em troca de preços mais elevados Se as ordens forem executadas conforme desejado, o lucro de arbitragem seguirá.
Simples e fácil! No entanto, a prática de negociação algorítmica não é tão simples de manter e executar. Lembre-se, se você puder colocar uma negociação gerada por algoritmos, os outros participantes do mercado também poderão. Consequentemente, os preços flutuam em milissegundos e até microssegundos. No exemplo acima, o que acontece se a transação de compra for executada, mas o comércio de venda não é feito, pois os preços de venda mudam no momento em que seu pedido chega ao mercado? Você vai acabar sentado com uma posição aberta, fazendo com que sua estratégia de arbitragem seja inútil.
Existem riscos e desafios adicionais: por exemplo, riscos de falha do sistema, erros de conectividade de rede, atrasos entre ordens de negociação e execução e, o mais importante de tudo, algoritmos imperfeitos. Quanto mais complexo for um algoritmo, o backtesting mais rigoroso é necessário antes de ser colocado em ação.
The Bottom Line.
A análise quantitativa do desempenho de um algoritmo desempenha um papel importante e deve ser examinada criticamente. É excitante ir pela automação auxiliada por computadores com a noção de ganhar dinheiro sem esforço. Mas é preciso garantir que o sistema seja completamente testado e que os limites necessários sejam definidos. Comerciantes analíticos devem considerar aprender programação e construir sistemas por conta própria, para ter confiança em implementar as estratégias corretas de maneira infalível. Uso cauteloso e testes completos de negociação de algoritmos podem criar oportunidades lucrativas. (Para mais, veja Como codificar seu próprio robô de negociação da Algo.)
Estratégias de Negociação Algorítmica, Paradigmas e Idéias de Modelagem.
"As aparências enganam", disse uma pessoa sábia. A frase vale para as estratégias de negociação algorítmica. O termo estratégias de negociação algorítmica pode soar muito chique ou muito complicado. No entanto, o conceito é muito simples de entender, uma vez que o básico é claro. Neste artigo, vou falar sobre estratégias de negociação algorítmica com alguns exemplos interessantes.
Se você olhar de fora, um algoritmo é apenas um conjunto de instruções ou regras. Esse conjunto de regras é usado em uma bolsa de valores para automatizar a execução de ordens sem intervenção humana. Este conceito é chamado Algorithmic Trading.
Deixe-me começar com uma estratégia de negociação muito simples. Aqueles que já estão negociando saberão sobre S. M.A e para aqueles que não o fazem; S. M.A é média móvel simples. O S. M.A pode ser calculado usando qualquer número predefinido e fixo de dias. Uma estratégia de negociação algorítmica baseada em S. M.A pode ser simplificada nestes quatro passos simples:
Calcular 5 dias SMA Calcular 20 dias SMA Tomar uma posição longa quando o SMA de 5 dias for maior ou igual a SMA de 20 dias Ter uma posição curta quando o SMA de 5 dias for menor que SMA de 20 dias.
Referimo-nos a esta estratégia de negociação algorítmica como Moving Average Crossover Strategy. Este foi apenas um exemplo simples. Agora, não pense que tudo vai ser uma cama de rosas. Mesmo que fosse, então esteja preparado para os espinhos. Na negociação cotidiana, algoritmos de negociação muito mais complexos são usados para gerar estratégias de negociação algorítmica.
Todas as estratégias de negociação algorítmica que estão sendo usadas hoje podem ser classificadas amplamente nas seguintes categorias:
Momento / Tendência Após Arbitragem Tomada de Mercado de Arbitragem Estatística.
Deixe-me entrar em alguns detalhes.
Estratégias baseadas no momento.
Supondo que haja uma tendência específica no mercado. Como um comerciante de algo, você está seguindo essa tendência. Além de nossa suposição, os mercados caem dentro da semana. Agora, você pode usar estatísticas para determinar se essa tendência continuará. Ou se vai mudar nas próximas semanas. Assim, você fará o seu próximo passo. Você baseou sua estratégia de negociação algorítmica nas tendências de mercado que você determinou usando estatísticas.
Este método de seguir as tendências é chamado de estratégia baseada em dinâmica.
Existem inúmeras maneiras de implementar essa estratégia de negociação algorítmica e discuti isso em detalhes em um de nossos artigos anteriores, chamado “Metodologia de Quantificação de Notícias para o Comércio Automático”.
Se assumirmos que um pharma-corp deve ser comprado por outra empresa, então o preço das ações de nosso corp pode subir. Isso é acionado pela aquisição, que é um evento corporativo. Se você planeja investir com base nas ineficiências de preços que podem acontecer durante um evento corporativo (antes ou depois), então você está usando uma estratégia orientada a eventos. Falência, aquisição, fusão, spin-offs, etc. podem ser o evento que conduz esse tipo de estratégia de investimento.
Essas estratégias podem ser neutras em termos de mercado e usadas amplamente por corretores de hedge funds e proprietários.
Arbitragem Estatística.
Quando surge uma oportunidade de arbitragem por causa de citação incorreta nos preços, pode ser muito vantajoso para a estratégia de negociação de algo. Embora tais oportunidades existam por um período muito curto, os preços no mercado são ajustados rapidamente. E é por isso que esse é o melhor uso de estratégias de negociação algorítmica, já que uma máquina automatizada pode acompanhar essas alterações instantaneamente.
Por exemplo, se o preço da Apple cair para menos de US $ 1, a Microsoft cairá US $ 0,5, mas a Microsoft não caiu, então você vai vender a Microsoft para obter lucro. Você pode ler sobre os equívocos comuns que as pessoas têm sobre Arbitragem Estatística aqui.
Fabricação de mercado.
Para entender o mercado, deixe-me falar primeiro sobre os criadores de mercado.
Segundo a Wikipedia:
Um criador de mercado ou provedor de liquidez é uma empresa, ou um indivíduo, que cita tanto um preço de compra quanto um preço de venda em um instrumento financeiro ou mercadoria mantida em estoque, esperando lucrar com o spread de oferta ou oferta.
A criação de mercado fornece liquidez a títulos que não são frequentemente negociados na bolsa de valores. O formador de mercado pode melhorar a equação demanda-oferta de títulos. Deixe-me lhe dar um exemplo:
Vamos supor que você tenha Martin, um criador de mercado, que compra por Rs. 500 do mercado e vendê-lo em 505. Ele lhe dará uma cotação bid-ask de Rs. 505-500. O lucro de Rs. 5 não pode ser vendido ou trocado por dinheiro sem perda substancial de valor. Quando Martin assume um risco maior, o lucro também é maior.
Eu achei o livro de Michael Lewis "Flash Boys" no Indian Bull Market bastante interessante e ele fala sobre liquidez, criação de mercado e HFT em grande detalhe. Confira depois de terminar de ler este artigo.
Desde que você precisará ser analítico & amp; Embora seja quantitativo ao entrar ou atualizar para a negociação algorítmica, é imperativo aprender programação (alguns, se não todos) e construir sistemas infalíveis e executar a estratégia de negociação algorítmica correta. Lendo este artigo sobre negociação automatizada com Interactive Brokers usando Python será muito benéfico para você. Você pode ler o artigo aqui.
Paradigmas & amp; Idéias de Modelagem.
Agora que eu apresentei estratégias de negociação algorítmica, estarei lançando alguma luz sobre os paradigmas de estratégia e as idéias de modelagem pertencentes a cada estratégia.
Tomada De Mercado Estatística Arbitragem Momentum Machine Learning Based.
Fabricação de mercado.
Como mencionei anteriormente, o objetivo primordial da criação de mercado é infundir liquidez em títulos que não são negociados em bolsas de valores. Para medir a liquidez, levamos em consideração o spread de compra e venda e os volumes de negociação.
Os algoritmos de negociação tendem a lucrar com o spread bid-ask. Vou me referir ao nosso amigo, Martin, novamente nesta seção. Martin sendo um criador de mercado é um provedor de liquidez que pode cotar tanto no lado de compra quanto de venda em um instrumento financeiro que espera lucrar com o spread de oferta de oferta. Martin aceitará o risco de manter os títulos para os quais citou o preço e, uma vez recebido o pedido, muitas vezes ele venderá imediatamente de seu próprio inventário. Ele pode procurar uma oferta de compensação em segundos e vice-versa.
Quando se trata de títulos ilíquidos, os spreads são geralmente mais altos e os lucros também. Martin assumirá um risco maior nesse caso. Vários segmentos do mercado não têm interesse dos investidores devido à falta de liquidez, já que não conseguem sair de várias ações de pequena e média capitalização em um dado momento.
Fabricantes de mercado como Martin são úteis, pois estão sempre prontos para comprar e vender ao preço cotado por eles. De fato, grande parte da negociação de alta frequência (HFT) é uma atividade de mercado passiva. As estratégias estão presentes nos dois lados do mercado (muitas vezes simultaneamente) competindo entre si para fornecer liquidez àqueles que precisam.
Então, quando essa estratégia é mais lucrativa?
Essa estratégia é lucrativa desde que o modelo preveja com precisão as variações futuras de preço.
Modelando idéias baseadas neste paradigma.
O spread bid-ask e o volume de transações podem ser modelados em conjunto para obter a curva de custo de liquidez, que é a taxa paga pelo tomador de liquidez. Se o tomador de liquidez só executar ordens com o melhor lance e pedir, a taxa será igual ao lance pedir spread vezes o volume. Quando os negociadores vão além do melhor lance e pedem mais volume, a taxa também se torna uma função do volume.
O volume de negociação é difícil de modelar, pois depende da estratégia de execução dos tomadores de liquidez. O objetivo deve ser encontrar um modelo para volumes de comércio que seja consistente com a dinâmica de preços. Modelos de criação de mercado são geralmente baseados em um dos dois:
O primeiro se concentra no risco de estoque. O modelo é baseado na posição de estoque preferencial e nos preços com base no apetite de risco. O segundo é baseado na seleção adversa que distingue entre negociações informadas e de ruído. Negociações de ruído não possuem qualquer visão sobre o mercado, enquanto que as transações informadas fazem. Quando a visão do tomador de liquidez é de curto prazo, seu objetivo é obter lucro a curto prazo, utilizando a margem estatística. No caso de visão de longo prazo, o objetivo é minimizar o custo da transação. As estratégias de longo prazo e as restrições de liquidez podem ser modeladas como ruído em torno das estratégias de execução de curto prazo.
Para saber mais sobre o Market Makers, você pode conferir este interessante artigo no blog da QuantInsti.
Arbitragem Estatística.
Se a criação de mercado for a estratégia que faz uso do spread bid-ask, a Arbitragem Estatística busca lucrar com a precificação estatística de um ou mais ativos com base no valor esperado desses ativos.
Uma maneira mais acadêmica de explicar a arbitragem estatística é espalhar o risco entre mil a milhões de negociações em um período de detenção muito curto, esperando obter lucro da lei de grandes números. Algoritmos de Arbitragem Estatística são baseados na hipótese de reversão da média, principalmente como um par.
O comércio de pares é uma das várias estratégias coletivamente referidas como Estratégias de Arbitragem Estatística. Em pares estratégia comercial, as ações que exibem co-movimento histórico nos preços são emparelhadas usando semelhanças fundamentais ou baseadas no mercado. A estratégia baseia-se na noção de que os preços relativos em um mercado estão em equilíbrio e que os desvios desse equilíbrio serão eventualmente corrigidos.
Quando um estoque supera o outro, o outperformer é vendido a descoberto e o outro é comprado com a expectativa de que o desvio de curto prazo termine em convergência. Isto frequentemente protege o risco de mercado de movimentos adversos do mercado, isto é, torna a estratégia beta neutra. No entanto, o risco total de mercado de uma posição depende do montante de capital investido em cada ação e da sensibilidade das ações a esse risco.
A Momentum Strategies busca lucrar com a continuidade da tendência existente, aproveitando as oscilações do mercado.
“Em palavras simples, compre alto e venda mais alto e vice-versa.”
E como conseguimos isso?
Nesta estratégia de negociação de algoritmos em particular, teremos posições de curto prazo em ações que estão subindo ou descendo até que apresentem sinais de reversão. É contra-intuitivo para quase todas as outras estratégias bem conhecidas. O investimento em valor é geralmente baseado em reversão de longo prazo para significar, enquanto o investimento em momentum é baseado na lacuna no tempo antes da reversão da média ocorrer.
O momentum está perseguindo o desempenho, mas de uma maneira sistemática, tirando vantagem de outros caçadores de desempenho que estão tomando decisões emocionais. Normalmente, há duas explicações dadas para qualquer estratégia que tenha funcionado historicamente, ou a estratégia é compensada pelo risco extra que ela assume ou por fatores comportamentais, devido a qual prêmio existe.
Há uma longa lista de preconceitos comportamentais e erros emocionais que os investidores exibem devido a que o momento funciona. No entanto, é mais fácil falar do que fazer, pois as tendências não duram para sempre e podem exibir reversões rápidas quando atingem o pico e chegam ao fim. O momento de negociação carrega um grau mais alto de volatilidade do que a maioria das outras estratégias e tenta capitalizar a volatilidade do mercado. É importante ter tempo para comprar e vender corretamente para evitar perdas, usando técnicas adequadas de gerenciamento de risco e interrompendo as perdas. O investimento em momento requer monitoramento adequado e diversificação apropriada para salvaguardar contra esses acidentes graves.
Em primeiro lugar, você deve saber como detectar o momentum do preço ou as tendências. Como você já está negociando, sabe que as tendências podem ser detectadas seguindo ações e ETFs que estão continuamente subindo por dias, semanas ou até vários meses seguidos. Por exemplo, identifique as ações negociando dentro de 10% de suas 52 semanas de alta ou observe a variação do preço percentual nas últimas 12 ou 24 semanas. Da mesma forma para detectar uma tendência mais curta, inclua uma mudança de preço a curto prazo.
Se você se lembra, em 2008, o setor de petróleo e energia foi continuamente classificado como um dos principais setores, mesmo quando estava em colapso. Também podemos analisar os ganhos para entender os movimentos nos preços das ações. Estratégias baseadas em retornos passados (“estratégias de momentum de preço”) ou em surpresa de ganhos (conhecidas como “estratégias de momentum de ganhos”) exploram a reação do mercado a diferentes informações. Uma estratégia de ganho de lucros pode lucrar com a reação negativa a informações relacionadas a ganhos de curto prazo. Da mesma forma, uma estratégia de momentum de preço pode lucrar com a resposta lenta do mercado a um conjunto mais amplo de informações, incluindo a lucratividade de longo prazo.
Aprendizado de Máquina baseado.
Na negociação baseada em Aprendizado de Máquina, os algoritmos são usados para prever o intervalo para movimentos de preço de curtíssimo prazo em um determinado intervalo de confiança. A vantagem de usar a Inteligência Artificial (IA) é que os humanos desenvolvem o software inicial e a própria IA desenvolve o modelo e o aprimora com o tempo. Um grande número de fundos depende de modelos computacionais construídos por cientistas de dados e quants, mas eles geralmente são estáticos, ou seja, não mudam com o mercado. Modelos baseados em ML, por outro lado, podem analisar grandes quantidades de dados em alta velocidade e melhorar-se através de tais análises.
Uma forma de inclinação da máquina chamada “redes Bayesianas” pode ser usada para prever tendências de mercado enquanto utiliza algumas máquinas. Uma IA que inclua técnicas como a computação evolucionária (que é inspirada pela genética) e o aprendizado profundo pode ser executada em centenas ou mesmo milhares de máquinas. Ele pode criar uma coleção grande e aleatória de operadores de ações digitais e testar seu desempenho em dados históricos. Em seguida, ele escolhe os melhores artistas e usa seu estilo / padrões para criar um novo tipo de trader evoluído. Este processo é repetido várias vezes e é criado um comerciante digital que pode funcionar totalmente por conta própria.
Este processo é repetido várias vezes e é criado um comerciante digital que pode funcionar totalmente por conta própria.
Estes foram alguns importantes paradigmas de estratégia e idéias de modelagem. Em seguida, vamos passar pelo procedimento passo a passo para construir uma estratégia de negociação.
Você pode aprender esses paradigmas detalhadamente no Programa Executivo QuantInsti em Algorithmic Trading (EPAT), um dos mais extensivos cursos de negociação algorítmica disponíveis on-line com gravações de palestras e acesso e suporte vitalícios.
Construindo uma estratégia de negociação algorítmica.
De estratégias de negociação de algoritmos a paradigmas e idéias de modelagem, chego a essa seção do artigo onde vou dizer como construir uma estratégia de negociação algorítmica básica.
Como você começa com a implementação de estratégias de negociação de algo?
Essa é a primeira pergunta que deve ter vindo à sua mente, eu presumo. A questão é que você já começou conhecendo os fundamentos e os paradigmas das estratégias de negociação algorítmica ao ler este artigo. Agora, que o nosso vagão tem o motor ligado, é hora de pressionar o acelerador.
E como exatamente isso é feito?
Vou explicar como uma estratégia de negociação algorítmica é construída, passo a passo. A descrição concisa lhe dará uma idéia sobre todo o processo.
O primeiro passo é decidir o paradigma da estratégia. Pode ser Market Making, Arbitrage based, Alpha, Hedging ou Execution based strategy. Para este exemplo em particular, escolherei negociação em pares, que é uma estratégia de arbitragem estatística que é neutra em termos de mercado (beta neutro) e gera alfa, isto é, faz dinheiro independentemente do movimento do mercado.
Você pode decidir sobre os títulos reais que deseja negociar com base na visão de mercado ou através de correlação visual (no caso de estratégia de negociação de pares). Estabelecer se a estratégia é estatisticamente significativa para os títulos selecionados. Por exemplo, no caso de troca de pares, verifique a cointegração dos pares selecionados.
Agora, codifique a lógica com base na qual você deseja gerar sinais de compra / venda na sua estratégia. Para a troca de pares, verifique a “reversão à média”; calcule o escore z para o spread do par e gere os sinais de compra / venda quando você espera que ele reverta para o significado. Decida sobre as condições de “Stop Loss” e “Profit Taking”.
Stop Loss & # 8211; Uma ordem de stop-loss limita a perda de um investidor em uma posição em um título. Ele dispara uma ordem para eliminar a posição longa ou curta existente para evitar mais perdas e ajuda a tirar a emoção das decisões de negociação. Take Profit & # 8211; ordens take-profit são usadas para fechar automaticamente as posições existentes, a fim de garantir lucros quando há um movimento em uma direção favorável. Citando ou batendo estratégia.
É muito importante decidir se a estratégia será “citando” ou “batendo”. A estratégia de execução, em grande medida, decide o quão agressiva ou passiva sua estratégia será.
Citando & # 8211; Na negociação em pares, você cita uma garantia e, dependendo se essa posição é preenchida ou não, você envia a ordem para a outra. Nesse caso, a probabilidade de obter um preenchimento é menor, mas você salva bid-ask em um lado. Batendo - Neste caso, você envia ordens de mercado simultâneas para ambos os títulos. A probabilidade de obter um preenchimento é maior, mas, ao mesmo tempo, a derrapagem é maior e você paga bid-ask em ambos os lados.
A escolha entre a probabilidade de preenchimento e execução otimizada em termos de derrapagem e executivo cronometrado é o que é isso se eu tiver que colocar dessa maneira. Se você optar por citar, então você precisa decidir para o que está citando, é assim que funciona o par de operações. Se você decidir fazer uma cotação para o título menos líquido, o escorregamento será menor, mas os volumes de negociação cairão em títulos líquidos, por outro lado, aumentarão o risco de derrapagem, mas os volumes de negociação serão altos.
A utilização de estatísticas para verificar a causalidade é outra maneira de chegar a uma decisão, ou seja, alterar em que segurança provoca alterações no outro e qual delas leva. O teste de causalidade determinará o par de "lead-lag"; citar para o líder e cobrir a segurança de atraso.
Como você decide se a estratégia escolhida foi boa ou ruim?
Como você julga sua hipótese?
É aí que o back-testing da estratégia surge como uma ferramenta essencial para a estimativa do desempenho da hipótese projetada com base em dados históricos. Uma estratégia pode ser considerada boa se os resultados do backtest e as estatísticas de desempenho apoiarem a hipótese.
Por isso, é importante escolher dados históricos com um número suficiente de pontos de dados. Isso é para criar um número suficiente de negociações de amostra (pelo menos 100 negociações) cobrindo vários cenários de mercado (alta, baixa, etc.). Certifique-se de fazer provisão para custos de corretagem e derrapagem também. Isso vai te dar resultados mais realistas, mas você ainda pode ter que fazer algumas aproximações durante o backtesting. Por exemplo, enquanto backtesting citando estratégias é difícil descobrir quando você obtém um preenchimento. Assim, a prática comum é assumir que as posições são preenchidas com o último preço negociado.
Para que tipo de ferramentas você deve ir, enquanto faz o backtesting?
Desde backtesting para estratégias de negociação algorítmica envolve uma enorme quantidade de dados, especialmente se você for usar dados tick by tick. Então, você deve ir para ferramentas que podem lidar com essa enorme quantidade de dados.
R ou MATLAB?
R é excelente para lidar com grandes quantidades de dados e também possui um alto poder de computação. Assim, tornando-se uma das melhores ferramentas para backtesting. Além disso, R é open source e livre de custos. Também podemos usar o MATLAB, mas ele vem com um custo de licenciamento.
Tudo bem, eu acabei de tirar a famosa citação de Ben Parker do filme Homem-Aranha (não do Incrível). Mas confie em mim, é 100% verdade. Não importa o quão confiante você pareça com a sua estratégia ou quão bem sucedido ela possa ser, você deve ir e avaliar cada um e tudo em detalhes. Existem vários parâmetros que você precisa monitorar ao analisar o desempenho e o risco de uma estratégia. Algumas métricas / proporções importantes são mencionadas abaixo:
Retorno Total (CAGR) - Taxa de Crescimento Anual Composta (CAGR). É a taxa de crescimento média anual de um investimento durante um período de tempo especificado superior a um ano. Taxa de acerto - ordem de negociação. Lucro Médio por Lucro Total do Comércio dividido pelo número total de negócios Perda Média por Comércio - Perda Total dividida pelo número total de negócios Retirada Máxima & # 8211; Perda máxima em qualquer negociação Volatilidade de devoluções - Desvio padrão dos “retornos” Sharpe Ratio - Retornos ajustados pelo risco, ou seja, retornos excedentes (sobre a taxa livre de risco) por unidade de volatilidade ou risco total.
Todo o processo de estratégias de negociação algorítmica não termina aqui. O que eu forneci neste artigo é apenas o pé de um Everest sem fim. Para conquistar isso, você deve estar equipado com o conhecimento correto e orientado pelo guia certo. É aí que entra o QuantInsti, para guiá-lo nessa jornada. QuantInsti irá ajudá-lo a conquistar o Everest no final. Se você quiser saber mais sobre estratégias de negociação algorítmica, clique aqui.
Negociação Algorítmica.
Desenvolva sistemas de negociação com MATLAB.
A negociação algorítmica é uma estratégia de negociação que usa algoritmos computacionais para orientar decisões de negociação, geralmente em mercados financeiros eletrônicos. Aplicada em instituições de buy-side e sell-side, a negociação algorítmica forma a base de negociação de alta frequência, negociação de FOREX e análise associada de risco e execução.
Os desenvolvedores e usuários de aplicativos de comércio algorítmico precisam desenvolver, fazer backtest e implantar modelos matemáticos que detectem e explorem os movimentos do mercado. Um fluxo de trabalho efetivo envolve:
Desenvolvendo estratégias de negociação, usando técnicas de séries temporais técnicas, aprendizado de máquina e séries temporais não lineares Aplicando computação paralela e de GPU para backtesting e identificação de parâmetros com eficiência de tempo Calculando lucros e perdas e conduzindo análises de risco Executando análises de execução, como modelagem de impacto de mercado análise de custos de transação e detecção de icebergs Incorporando estratégias e análises em ambientes de negociação de produção.
Exemplos e como.
Análise Walk-Forward: Usando o MATLAB para Backtest sua estratégia de negociação (35:15) - Webinar Introdução ao Trading Toolbox, Parte 1: Conectar-se a corretores interativos (7:22) - Cointegração de vídeo e negociação de pares com o Econometrics Toolbox (1:01) : 27) - Webinar Backtesting Trading Strategies em apenas 8 linhas de código (4:13) - Video CalPERS analisa a dinâmica do mercado de moeda para identificar oportunidades de negociação intraday - História do usuário Quantitative Trading: Como construir o seu próprio negócio de negociação algorítmica, por Ernest Chan - Reserve o Código de Negociação Algorítmica e Outros Recursos - Troca de Arquivos.
Referência de software.
Funções de Caixa de Ferramentas de Negociação - Classificação de Documentação App de Aprendizagem - Estatísticas e Machine Learning Toolbox App movavg: Gráfico de médias móveis atrasadas e atrasadas - Caixa de Ferramentas Financeiras Função sharpe: Compute Sharpe ratio - Caixa de Ferramentas Financeira Função gaoptimset: Criar estrutura de opções de algoritmos genéticos - Global Optimization Toolbox Function Cointegration Testing - Ferramentas da Caixa de Ferramentas da Econometria Ferramenta de Séries Temporais da Rede Neural - Documentação da Neural Network Toolbox.
Escolha o seu país.
Escolha o seu país para obter conteúdo traduzido onde estiver disponível e veja eventos e ofertas locais. Com base na sua localização, recomendamos que você selecione:.
Você também pode selecionar um local na lista a seguir:
América Latina (Español) Canadá (inglês) Estados Unidos (inglês)
Bélgica (inglês) Dinamarca (inglês) Deutschland (Deutsch) España (Español) Finland (inglês) France (Français) Ireland (inglês) Italia (Italiano) Luxembourg (inglês)
Holanda (inglês) Noruega (inglês) Österreich (Deutsch) Portugal (inglês) Sweden (inglês) Switzerland Deutsch English Français Reino Unido (inglês)
Ásia-Pacífico.
Austrália (inglês) Índia (inglês) Nova Zelândia (inglês) 中国 (简体 中文) 日本 (日本語) 한국 (한국어)
Explorar produtos.
Experimente ou compre.
Aprenda a usar.
Obtenha suporte.
Sobre o MathWorks.
Acelerando o ritmo da engenharia e da ciência.
MathWorks é o desenvolvedor líder de software de computação matemática para engenheiros e cientistas.
Comments
Post a Comment